A new generation of airships is taking to the skies

 The smooth, white underbelly of the airborne whale sails across the sky, casting a shadow across the forest below.Other than its enormous size, though, this “whale” has very little to do with its animal namesake. It’s an airship, and French aeronautics company Flying Whales hopes its hybrid-electric, helium-lift vessel will change the shape of sustainable transport.



The airship could help solve the problem of how to transport cargo “when infrastructure is lacking, or just doesn’t exist at all,” says Romain Schlack, Flying Whales’ head of communications. “We are going to add new possibilities to global logistics, while overcoming obstacles and problems on the ground.”

Airship technology has been around for over 150 years and gained popularity in the early 1900s ferrying passengers and cargo across land and ocean.

But as airplanes became faster and more advanced, airships couldn’t keep up. Then, in 1937, an airship called the Hindenburg burst into flames, killing 36 people, firmly marking the end of the golden age of airships.

Now, nearly 90 years later, interest in the lighter-than-air transport is reviving. With low carbon emissions, and no requirement for expensive ground infrastructure like airports or roads, because they can load and unload cargo while hovering, airships could be a sustainable solution for logistics across the globe.

Carrying at least two crew members, the airships will be able to up to transport 60 tons of cargo – around the same as two to three freight trucks.

Schlack says the “flying whales” are designed to carry heavy, bulky items such as blades for wind turbines, logs collected from steep mountainsides, or construction materials being delivered to remote, isolated locations. Airships could also deliver food or aid after natural disasters, when railways or roads might be inaccessible.

Compared to helicopters, which are the go-to transport for remote cargo deliveries, Flying Whales claims its airships will produce less than 10% of the carbon emissions while operating – plus their freight system leaves wilderness and countryside untouched, while still connecting small, rural communities to the wider global supply chain.

Flying Whales is not the only company trying to revive airships: other startups, such as LTA Research, backed by Google co-founder Sergey Brin, are also exploring this low-impact transport solution.

But a key question facing manufacturers is which lighter-than-air gas to fill the balloons with: hydrogen or helium?

Hydrogen is cheap, renewable, and has more lifting power than helium. However, it’s highly flammable and has long been associated with devastating airship disasters like the Hindenburg.

That’s why most companies, including Flying Whales and LTA Research, are using helium, which is non-flammable.

However, helium is less buoyant than hydrogen and more expensive, with unstable prices: between 2011 and 2016, its price increased 250%, and in 2020, it was up to 67 times more expensive than hydrogen.

More importantly, though, the helium supply could run out.

At current usage rates, the American Chemical Society says it could go extinct within the next century. That’s a problem because helium is vitally important for a variety of industries. It’s used in medical equipment like MRI machines, and there is currently no alternative.

Barry Prentice, professor and former director of the transport Institute at the Asper School of Business at the University of Manitoba, says that’s why it’s vital that airships start using hydrogen again.

Prentice is also the founder and president of BASI, a Manitoba-based company specializing in airships adapted for cold climates. The company is developing an airship that uses hydrogen for lift, in the hope that the Canadian government will relax its regulations on the use of hydrogen.

Advancements in science and technology over the last century have made the gas safer to use, says Prentice. For example, hydrogen is only flammable when mixed with air, something that might occur if there is a leak in the balloon – which is what’s suspected to have happened on the Hindenburg. Modern 

technology such as “hydrogen sniffers” which detect leaks can help manage this, says Prentice.

And while the FAA lists hydrogen as an unsuitable lifting gas in its criteria for airship certification, the European Aviation Safety Agency updated its regulations in 2022, allowing any lifting gas, as long as the associated risks can adequately be addressed and mitigated by the design.

BASI is not the only organization pursuing hydrogen-lift airships: FlyWin, an airship design project based at the Université Libre de Bruxelles in Belgium is exploring materials and design to allow safe use of hydrogen, while hydrogen delivery company H2 Clipper is aiming to have its hydrogen-lift airship in commercial operation before 2030.

Those opting for helium say that the volume needed for airships is minimal compared to the supply. “Each airship will be filled with 180,000 cubic meters of helium,” says Schlack. With 160 million cubic meters produced globally in 2021, each airship would account for around 0.1% of annual helium production. “We are pretty confident in the supply for our aircrafts,” he says, adding that helium isn’t consumed by airships, but is “stored” in the balloons, and only requires small top ups from time to time.

Comments